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1. Introduction 

A physical restriction in most conventional continuum models is their inability of taking into 

account sufficient microscopic degrees of freedom in the constitutive framework. For crystalline 

metallic materials, the dislocation-related microstructural degrees of freedom responsible for 

dislocation substructure evolution are critically important to model and simulate multiscale 

aspects of plastically deforming metals. A solution to this problem has been recently provided by 

the Field Theory of Multiscale Plasticity (FTMP) advocated by Hasebe (1–4). In this relatively 

new theoretical framework, additional degrees of freedom are implemented via FTMP-based 

tensor of incompatibility derived from the differential geometric curvature tensor constructed 

from gradients of the metric tensor of the plastically deformed (or elastically unloaded) 

incompatible/anholonomic crystalline space (4–6), to be ultimately incorporated in a crystalline 

plasticity-based constitutive framework.  

In this work, we propose a new model for deformation twinning based on FTMP. Twinning is an 

alternative mode of plastic deformation to slip via dislocation glide, the former involving 

collective motion of partial dislocations. Deformation twinning is a major deformation mode for 

hexagonal close-packed (HCP) metals (here HCP refers to any hexagonal metal, not necessarily 

one with the ideal c/a ratio for closest packing, where c and a are lattice parameters of the 

hexagonal unit cell) and also for some face-centered cubic (FCC) metals with low stacking fault 

energy (SFE) (e.g., less than 25 mJ/m
2
) and in body-centered cubic (BCC) metals under high 

strain rates and/or low temperatures. Even in FCC metals with intermediate SFE around  

50–70 mJ/m
2
, such as copper (Cu) and nickel (Ni), where most plastic deformation can be carried 

by glide of dislocations, mechanical twinning can still take place, e.g., under hypervelocity impact 

loading. Since both twinning and slip resistance can be affected by densities of continuously 

distributed dislocations introduced via accommodation of excessive local deformation, extended 

use of the incompatibility tensor-based model is expected be effective for their descriptions. 

In this report, a brief theoretical overview and a “flow-evolutionary working hypothesis” are 

given in section 2. The constitutive framework is outlined in sections 3 (slip) and 4 (twinning). 

Representative results from deformation simulations of cubic and hexagonal metallic crystals 

(Cu and magnesium [Mg], respectively) are presented in sections 5 and 6. Bold font is used for 

vectors and tensors and italic for scalars with summation over repeated indices.  
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2. Theoretical Background 

2.1 Differential Geometric Description of Defect Fields 

Let   denote the covariant derivative with respect to arbitrary connection Γ . In spatial 

coordinates ix  (i = 1,2,3), the covariant derivative of a smooth vector field ( )V x  is 

 j j j k

i i ikV V V    . (1) 

The covariant derivative of the space itself can be defined by  

 ( )( )i i l k i l k

k

i i
kl kl

x x dx dx x dx    x   . (2) 

Let indices in brackets be skew, indices in parentheses be symmetric, and indices in vertical bars 

be excluded from such operations, e.g., 

 [ ] ( ) [ | | ]2 , 2 , 2ij ij ji ij ij ji i j k ijk kjiA A A A A A B B B      . (3) 

Torsion and curvature tensors are defined, respectively, for a generic connection as 

 
[ ] ][

.. ...
[ ]

, )2( n n p

k l m l mk p

j j n
kl kl klm

S R       . (4) 

When torsion S is nonzero, coefficients of  describe a non-Riemannian space. When curvature 

R vanishes, the space is said to be flat. 

In finite deformation plasticity, a multiplicative decomposition of the deformation gradient F 

into elastic and plastic terms is standard: 

 e p e p    F x X F F β β1+ + , (5) 

where in the final approximation, small deformations are assumed such that, for the displacement 

field u, in Cartesian coordinates, elastic and plastic distortions are additive: 

 
e p

j i j i i j ji jiu X u x u         . (6) 

Two connections are introduced: 

 1 1 T 11
2

, ( )i ei e i e il e e e e e e

jk j k jk j lk k lj l jkF F C C C C   

 
         C F F



  . (7) 

The first has vanishing curvature but nonvanishing torsion S , and the second has vanishing 

torsion but nonvanishing curvature R . Contractions of these higher-order tensors considering 

symmetry results in well-known second-order tensors. They are respectively called “dislocation 

density tensor” and “incompatibility tensor,” given in the geometrically linear regime by the curl 

of the elastic or plastic distortion tensor and double curl of the elastic or plastic strain tensor: 
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 ..ij ikl ikl e j ikl p j

l l

j
kl k k

S          , (8) 

 1
4

ij ikl jmn ikl jmn e ikl jmn p

ln lnm mklmn k k
R              , (9) 

where elastic and plastic strains are ( )
e e

ln ln   and ( )
p p

ln ln  , and where 1/2ikl iklg e  with 

det[ ] det[ ]ij i jg g   x x  and ikle  is the dimensionless alternator symbol. In the right two 

equalities of equation 9, terms on the order of the square of the connection coefficients are 

assumed small relative to strain gradients. Complete derivations can be found elsewhere (4, 6, 7). 

Henceforth, Cartesian coordinates are used ( ij ijg  ), and linearized tensors in equations 8 and 9 

are 

 ,p p

ij ikl kj ij ikl jmn lnml k
e e       . (10) 

The important point to note here is that these quantities are expressed as gradients of plastic 

distortion or plastic strain, meaning the theory intrinsically requires strain gradients at least up to 

the second order.  

2.2 Flow-Evolutionary Hypothesis in FTMP 

Hasebe’s “flow-evolutionary hypothesis” asserts laws for evolution of inhomogeneous fields and 

attendant local plastic flow accompanied by energy dissipation. The notion of “duality” between 

fluctuating hydrostatic stress and deviatoric strain fields introduced in FTMP (2–4) can be 

embodied by this law, although it still is a “working hypothesis” deserving further verification 

and validation. Specifically, it represents an interrelationship between locally stored strain 

energy (fluctuation part) and local plastic flow (in the form of incompatibility tensor field  ) as 

has been discussed in the context of polycrystalline plasticity (8). A brief motivation for this 

hypothesis follows. 

Consider an elastic medium with internal energy density  and kinetic energy density : 

 1
2

( , ), , ,      ε x v v . (11) 

Here,  and  are the Lagrangian and Hamiltonian energy densities, respectively. Let the 

Cauchy stress be   σ ε and the energy momentum tensor be (9) 

 exp( ), ( ) ( ) |ij ij ik j k j ij j j i i iT u T v u t f x                . (12) 

Here, f is the local force per unit volume acting on an inhomogeneity or defect.  

In the static case, and when ( ) ε , i.e., the body contains no heterogeneities, then T is 

divergence-free. The incompatibility tensor is symmetric and divergence-free: 

 [ ] ( )
0p p

j ij j ji jkl imn j jk l imn jln lnm mk k
e e e e              . (13) 
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Under these assumptions, since both energy-momentum tensor and incompatibility tensor are 

divergence-free, the following linear relationship can be postulated: 

 1
2

, ( )ij ijkl kl ijkl ik jl il jkT           , (14) 

where isotropy is assumed in the definition of the constants ijkl , so that the first of equation 14 

is 

 ( ) ( ) 0ij ij j ij j ijT T         , (15) 

consistent with the vanishing divergence requirement if the skew part of T is divergence-free 

and/or vanishing. Equation 15 can be inverted to give 

 2

( )ij ijT l   , (16) 

where  is the shear modulus and l a length constant. Physically, equation 14 appears sensible 

since the energy-momentum tensor is a driving force for the evolution or motion of defects, 

which, in turn, are represented by incompatibility. A complementary hypothesis is (4)  

  tr    η , (17) 

which can be formulated using the 4-D permutation tensor entering the generalized cross product 

(10). The proposed relationship between incompatibility and elastic energy will be further 

explored in the context of numerical results in section 5.2.  

 

3. Constitutive Framework 

3.1 Shear Stress–Shear Strain Relationship 

As a tentative vehicle for accommodating the field theoretical concepts overviewed in the 

previous section to practical applications, the kinematical foundations of crystal plasticity are 

utilized. The constitutive equation to be used, on the other hand, puts its basis on the statistical 

mechanics-based dislocation dynamics with which wide ranges of strain rate and temperature can 

be taken into account in a unified manner.  

The current field theoretical notions and quantities, including the interaction field framework, 

can be easily implemented into the crystalline plasticity model through strain gradient terms (8, 

11, 12). Hasebe proposed a constitutive model applicable to FCC, BCC, and HCP metals based 

on statistical mechanics and dislocation dynamics. The rate of plastic distortion is the usual form 

from crystal plasticity theory: 

 
1

Np p   





 F β s m , (18) 
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with s  and 
m  the slip direction and plane normal for system . The explicit form for slip rates 

due to resolved shear stress :    σ s m  is (8, 11) 

  
1

| | exp 1 ( ) ,
q

p

S S S PA B K C



         
 

               . (19) 

Here, 
0 B, ,S m S SA bL B G k T C BL b      , where K 

and 
  are drag and back stress, 

respectively, responsible for isotropic and kinematic hardening; , , , , andm L b B   are mobile 

dislocation density, mean flying distance of dislocations, modified Debye frequency, the 

magnitude of Burgers vector and the damping coefficient due to, e.g., phonon drag, respectively; 

and 
0G  is activation energy for dislocation processes at T = 0 K. Exponents p and q in equation 

19 are parameters specifying thermal obstacles of interest, provided 0 1p   and 1 2q  . In 

the standard case, 31
2 2
,p q   is used for representing dislocation processes. Furthermore, 

1
2
( )   is the Macaulay parentheses, with ( )

P

 expressing the effective stress for overcoming 

the Peierls process given by 

 
)

1/
1/

0B

3

0

1 ln
P

P
P

p
q

P

k T

g b








 

  
   
   

, (20) 

where 0 0, , ,andP

P Pg p q  are parameters for thermal activation via the Peierls overcoming event. 

This constitutive model can express stress-strain responses for FCC, HCP, and BCC metals over 

a wide range of strain rates and temperatures, including impact loading conditions. For BCC, 

typically 0SC ; for FCC and HCP, typically / 0P K  . 

3.2 Drag Stress Model 

The hardening evolution models are affected through drag stress K


. The interactions of 

dislocation against forests (or equivalently, interactions among dislocations mostly belong to 

different slip systems) are regarded as being primarily responsible for the additional hardening. 

The quality of the additional hardening, i.e., “history,” is characterized by the effective cell size 

to be defined as follows via hardening ratio. 

The time evolution of the drag stress defines the instantaneous hardening modulus and is 

assumed to be expressed as the following form: 

 
1

1

( ) | | | |
N

N ref

ref

K Q H




  





  

 



  

 
  , (21) 

where ( ) refH       is the referential hardening modulus with no interaction among slip 

systems, while Q  denotes the hardening ratio that evolves with histories and interactions. In 

order to express the nonlocal actions associated with the evolution of inhomogeneities based on 

dislocation density and incompatibility fields, strain gradient terms are additively introduced into 

Q  as discussed in section 3.3. 
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Dimensionless hardening ratio Q  expresses the ratio of the flow stress increase to the 

referential level, measuring the additional hardening, and is further used to evaluate the effective 

cell size, because it, in principle, contains all the information about the dislocation cells evolved 

(responsible for the additional hardening). Therefore, we can assume that the quantity 

characterizes an effective size of dislocation cells, defined here as (12)  

 
1/ 2

0 ,
( )d d Q Q N  



 
  , (22) 

where 
0d  represents the initial cell size, normally a fraction of the initial grain size.  

3.3 Hardening Law and Field Theoretical Strain Gradient Terms 

The model incorporates contributions of α  and   through hardening ratio Q as (11) 

 
1

1 ( , )
N

Q f S F

   



       , (23) 

where f  represents the dislocation interaction matrix and S  expresses a history matrix 

further given as an increasing function of plastic work done by the effective stress that is 

responsible for dislocation processes: 

 tanh ( ), (no sum)P P

sat PS W W W W 

     . (24) 

Here, PW 
 defines the plastic work done by the effective stress for only the dislocation processes: 

 d dP P PW W t t         . (25) 

Function 1 2( ; ) ( ) ( )F F F            expresses the field theoretical “strain gradient term” 

contributions (8): 

      
1/ 2 1/ 2

1 2( ) | | , ( ) | | sgn( )dF k p b F k q l b      

       , (26) 

where ,p q   are coefficients related to contributions of dislocations and incompatibility to the 

change in the effective cell size d , while 
dl  represents the characteristic length of the defect 

field considered, e.g., 
dl b  for dislocation dipoles and 

610 mdl
  for substructures like cells. 

Here, and    are resolved components of andij ij  , respectively: 

 [( ) ]: , [( ) ]:                         s m s s s s m s s s s m  . (27) 

The first and second terms in brackets respectively correspond to edge and screw components of 

dislocation density. A similar assertion can be made for incompatibility, where the third will be 

called disclination type, though not corresponding to disclination theory in (6). 
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4. Modeling Deformation Twinning 

The elastic-plastic decomposition (equation 5) is extended to allow for twinning deformation (13): 

 e t p e t p   1+ +F F F F β β β . (28) 

Deformation for twinning is represented by 
tF with approximate time rate 

 
1

Mt t   





 F β s m , (29) 

with twinning direction s , habit plane normal 
m , and shearing rate  , which can be 

expressed in terms of the change in mass fraction of the twinned volume and the quantized 

maximum twinning shear (6, 13). The geometrically nonlinear version of the model implements 

the Jaumann rate of the Kirchhoff stress tensor (det )= F σ . In the geometrically linear regime, 

Cauchy stress is given by 

 2( ),e t p e e

ij ijkl kl ijkl l k kl kl ijkl ij klC C u C              . (30) 

The strain rate due to deformation twinning is assumed to be driven by the evolution of the 

incompatibility tensor field for the twinning mode, [( ) ]:      s m s  , i.e.,  

 3 3 3, 1t t sat

prevQ Q F F F 

  
     . (31) 

Here, 3( )F   denotes the FTMP-based incompatibility term defined as  

   
1/ 2

3 sgn( )tF k q l b 

   . (32) 

 

5. Numerical Simulations: FCC Copper (Cu) 

5.1 Model, Results, and Discussion 

The FTMP-based incompatibility model corresponding to slip and twinning degrees of freedom 

has been introduced into the hardening law in a crystalline plasticity-based constitutive equation 

applied to FCC Cu. The model has been implemented by Hasebe in an original finite-element 

method (FEM) code for static implicit analysis. Tension/compression analyses are conducted on 

a single slip–oriented single crystal to check basic capabilities of the model for describing 

several typical features of the deformation twinning: nucleation, growth (into, e.g., lenticular 

shapes), lattice rotation (satisfying the mirror symmetry), the attendant stress responses to be 

accompanied by softening with serrations, and energy redistribution into the twin degrees of 
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freedom. Similar analyses are carried out on multigrain samples (composed of seven grains) and 

larger polycrystalline samples to systematically investigate the effects of geometrically induced 

inhomogeneity on nucleation and growth of multiple twins and the attendant stress-strain 

responses.  

Figure 1 shows the domain analyzed in the present series of finite-element (FE) simulations, with 

24  24 cross triangle elements for plane stress conditions. The sample is pulled in a single slip 

orientation  125  to up to  = 0.20 (i.e., 20% tensile elongation).  

 

 

Figure 1. FE model used in tensile analysis, with loading axis promoting single slip. 

 

Figure 2 displays representative results exhibiting nucleation and the following growth of twins 

under tension, together with the stress response accompanied by serration. The twinned regions 

yield lattice rotations that tend to saturate at around 20°. Contours denote twinned regions by 

frequency of meeting a critical resolved shear stress condition.   

The twinning model becomes operative when the critical condition for the resolved shear stress 

is met, i.e., t

cr

  . Since nucleation and growth of twinned regions are generally difficult to 

predict using conventional constitutive models, other frameworks, such as phase field schemes, 

have been used elsewhere (14). The present FTMP-based model can also successfully simulate 

twinning as demonstrated here.  

In the present simulations, nucleation sites of twinning are essentially controlled by precursor 

inhomogeneity due to slip. More precisely, the precursor inhomogeneity is evolved from the 

FTMP  and  terms for the slip mode, i.e., 1 2( ), ( )F F    in equation 26, as shown in the top 

part of figure 2. This implies twinning behavior is greatly affected by the strain history.  
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Figure 2. Stress-strain responses comparing effect of precursor inhomogeneity on twin evolution. 

To demonstrate this implication, simulations are repeated with 1 2( ), ( ) 0F F    , with results 

shown in the bottom part of figure 2. Nucleation of the twin in this case is delayed until 

0.163  , and growth is ultimately initiated at around 0.170  , not from the center of the 

sample but from its upper and lower edges.  

Figure 3 compares evolving contours of twinned regions as well as the incompatibility 

term
3( ) ( )twinF F    between simulations considering the two conditions. Figure 3 confirms 

that weak evolution of slip-induced inhomogeneity, manifested as retarded growth of ( )twinF  , 

tends to inhibit the twin nucleation within the sample.  
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Figure 3. Comparison of twin domains (top) and incompatibility (bottom) for simulations with and without 

dislocation- and incompatibility-induced hardening. 

5.2 Flow-Evolutionary Hypothesis and Duality Diagram 

A duality diagram presentation permits observation of the associated energy flow from 

elastically stored states into local plasticity (dissipation) manifested by incompatibility tensor 

field evolutions. Specifically, such a diagram is constructed by plotting the trace of the 

incompatibility tensor tr KK  versus the fluctuating part of the elastic strain energy 

e    for a targeted domain, in further investigation of the hypothesis in equation 17.  

To focus on twin nucleation phenomena, we selected an observation area in the central region of 

the domain, such that the intruding twinning from the upper lower edges is excluded, as 

indicated in figure 4. 
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Figure 4. Observation area for duality diagram representations based on flow-evolutionary hypothesis 

comparing cases with and without twin nucleation. 

Figure 5 shows duality diagrams for the observation area comparing the two model cases: those 

with and without twin nucleation. In figure 5, a sharp rise in the incompatibility KK  is observed 

as strain energy e  increases for both cases, but the case with twin nucleation shows much 

earlier onset of rise in KK  than that without twin nucleation. Examining this more in detail, we 

see that the portion of the duality diagram where the sharp rises occur is enlarged in the inset. 

Marked differences between the two cases are clearly confirmed. The case with twin nucleation 

exhibits relatively gradual increase in KK  with increasing strain energy e  before nucleation 

takes place (marked by a circle). This pregrowth of KK  corresponds to the evolution of the 

precursor inhomogeneity discussed already. The case without twin nucleation, in contrast, yields 

a much smaller growth rate of  KK , eventually followed by a sharp increase not by nucleation 

but by intrusion of a twinned region from outside the observation area.  

From the energetic point of view, the duality diagram provides the following insight. In the case 

with twin nucleation, a rapid release of energy that has been stored elastically into the twin 

degrees of freedom results in twin nucleation and subsequent growth. 
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Figure 5. Duality diagram for FCC copper simulation results comparing cases with and without twin 

nucleation (with and without dislocation- and incompatibility-based hardening). 

5.3 Summary 

The foregoing results demonstrate some prominent capabilities of the proposed twinning model: 

• Natural representations of twin nucleation are possible in the sense that no artificial 

disturbance that promotes the outset of the twinning is required.  

• Nucleation and subsequent growth into lenticular shapes is realistically captured.  

• Stress-strain responses accompanied by serration and overall softening are predicted.  

The flow-evolutionary examination based on the duality diagram representation of the simulated 

results ( tr  vs. e ) has been shown indicative of twin evolution in terms of associated energy 

flow—specifically, how elastically stored strain energy is released to localized plastic flow or 

twinning. This has been clarified by comparing simulation results with and without the FTMP- 

model, the latter in which such twinning evolution does not occur naturally. 
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6. Numerical Simulations: HCP Magnesium (Mg) 

6.1 Model, Results, and Discussion 

Based on the kinematic description for inelasticity of HCP metals—three families of slip systems 

(basal, pyramidal, and prismatic) and two twin systems (tensile and compression twins)—the 

FTMP-based model is now applied to Mg. Basic capabilities for modeling pure Mg, with 

mechanical properties and test data available in the literature, are also confirmed in this stage, 

e.g., anisotropy in single crystals, focusing on orientation-dependent stress-strain responses, 

contributions of the prismatic slip system, tension-compression asymmetric stress-strain 

responses, and strain rate effects including rate sensitivity of flow.  

Deformation analyses are conducted for pure single-crystal Mg with the hexagonal crystal 

structure (termed here as hexagonal close packed or “HCP” following convention even though 

Mg does not demonstrate perfect close packing [14]), and descriptive capabilities of the model 

are confirmed by critical comparisons with experimental data for plane strain compression in 

multiple orientations from Kelley and Hosford (15, 16). 

Kelley and Hosford (15, 16) conducted a systematic series of constrained compression 

experiments on Mg single crystals, as schematically illustrated in figure 6. In the present 

simulations, the die constraint condition is realistically mimicked by the plane strain assumption. 

Orientations E and F exhibit peculiar stress responses showing plateau-like stagnation followed 

by a rapid stress increase. The plateau-like stress response observed for these two orientations is 

thought to be an indication of twin activity as the dominant deformation mode, while rapid stress 

increase is only partially relieved by the onset of hard nonbasal slip modes when twinning has 

saturated. Orientation G is particularly soft because of its favorable Schmid factor for basal slip, 

which has much lower strength than other systems.  
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Figure 6. Simulations for plane strain compression of Mg single crystals; twinning is reported prevalent 

in experiments on crystals in orientations E and F (15, 16). 

Figure 7 shows the predicted stress-strain responses for orientations A–G (curves) compared 

with the experimental data (points). We obtained excellent agreement for all orientations. In 

particular, simulated results for orientations E and F successfully reproduce the rather unusual 

and highly nonlinear stress-strain responses induced by twinning. 
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Figure 7. Compressive stress-strain predictions (curves) compared to experimental data for Mg (15, 16). 

6.2 Sample Size Dependence 

One noteworthy feature of the present model is its ability to represent absolute scale conveyed 

through the evaluation range of the second spatial derivative of strain for obtaining the 

incompatibility tensor field in equation 10. Since the E and F orientations exhibit peculiar 

twin-dominated stress-strain responses, they are expected to be sensitively affected by sample 

dimensions. To explore this possibility, three domains are compared: 12  12, 24  24, and 

48  48 m
2
. The associated results are presented in figure 8, together with stress-strain curves 

comparing the three sample sizes and the experimental data points. What can be clearly 

confirmed is that the emerging patterns obviously depend on the sample size for the two 

orientations. The stress responses vary slightly depending on the sample size, e.g., the onset of 

the stress rise for the E orientation is controlled by the sample dimension. The variation ranges 

roughly correspond to those of the experiments, implying the scatter of the experimental data 

may be a natural consequence of sample size or geometry.  
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Figure 8. Stress-strain predictions and experimental data (top) and simulated strain contours (bottom) for 

differently sized simulation domains. 

6.3 Mesh Size Independence 

Another feature of the current modeling approach is its ability to produce mesh-independent 

results. To demonstrate this, we compared simulations with two mesh divisions, 24  24 and 48 

 48 crossed triangle elements with the same evaluation size for the incompatibility tensor 

calculation. Figure 9 shows strain contours for these domains with different mesh divisions. The 

same general patterns emerge regardless of mesh size. Corresponding stress-strain curves are 

also displayed, showing almost identical response.  

For comparison, consider some recent conventional models for slip and twinning (17, 18) that 

appear to introduce a mode transition condition between twinning and plastic slip in an ad hoc 

manner. For example, one such model (17) assumes a hardening law as 

 1

0 0( ) for , ( ) ( ) form

ref ref refh h h h           . (33) 

Because such models do not include scale effects or gradient/nonlocal terms, these tend to 

behave similarly regardless of sample geometry and size, which can be physically unrealistic.  
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Figure 9. Stress-strain predictions (top) and strain contours (bottom) for domains with different meshes. 

Phase field models, on the other hand, seem to enable consideration of size/scale effects since 

spatial gradients (e.g., of order parameter(s)) enter the constitutive response. However, we may 

need to introduce initial fluctuations in the phase field (twinned region, in this case), and, 

depending on the problem, this step may affect nucleation sites and the number of predicted 

equilibrium twinned regions. Therefore, this approach requires a sound rationale. 

 

7. Conclusions 

A new rational model for deformation twinning has been developed, extending the original 

FTMP theory of Hasebe for dislocation-based crystal plasticity. Twinning degrees of freedom 

are taken into account via the FTMP-based incompatibility model, which is further implemented 

into a crystalline plasticity constitutive framework via the hardening law. The FTMP-based 

model is applied first to study to a single slip-oriented FCC crystal, and preliminary simulations 

have been conducted under static conditions to confirm the model’s basic capabilities. 

Simulation results exhibit nucleation and growth of twinned regions, accompanied by serrated 

stress responses with softening. The predicted nucleation of twins is examined in detail using 

duality diagrams in the context of Hasebe’s flow-evolutionary hypothesis. Numerical simulations 

have also been performed for pure single-crystal magnesium with HCP structure, and descriptive 
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capabilities of the model have been confirmed by critical comparisons with experimental data for 

plane-strain compression of crystals of multiple orientations available in the literature. Results 

successfully reproduce the unique stress-strain responses induced by twinning. Activities of the 

various slip systems and twinning mechanisms for each orientation have been predicted. Other 

noteworthy features addressed here, but not captured by conventional continuum plasticity 

models, are sample size dependence and mesh size independence. 

Future work will consider dynamic conditions with implementation using explicit FEM. 

Hypervelocity impact compression of metals will be explored, focusing on substructure 

evolution, where experimental observations have been documented in the literature. 
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